

precision works better

Incremental Encoder Magnetic

PWB encoders GmbH Am Goldberg 2 D-99817 Eisenach Germany Phone: +49 3691 72580-0 Fax: +49 3691 72580-29

info@pwb-encoders.com www.pwb-encoders.com

precision works better

Description

The MEM 25 is a magnetic incremental encoder. He is a reliable hollow shaft encoder that can be fixed quickly and easily on different sizes of motor shafts.

The encoder is developed for brushless motors, motor feedback applications and rotational speed control. The MEM 25 is a real time system for high speed applications and rough environments.

The encoder provides two square wave outputs in quadrature (90 degrees phase shifted) for counting and direction information and one index channel (one pulse per revolution).

The resolution of the encoder is determined by the number of counts per revolution (CPR). Optionally, the encoder is also available with UVW commutation signals (1, 2 or 4 pole-pairs). The power supply is selectable in a wide voltage range (5V up to 30V).

Power supply and signals are provided by a 3x2x0,14mm² shilded cable with tinned ends.

Performance

Features

- Output channels: 2 (quadrature) + 1 index-channel optionally: UVW commutation signals
- Output type: TTL compatible or HTL compatible
- Resolution: up to 1024 CPR (counts per revolution) optionally: up to 4 pole-pairs
- Frequency up to 500 kHz
- Power supply: 5 30 VDC
- Protection class IP65
- Small size: 28.0 mm diameter x 31.8 mm length
- Maximum shaft diameter: 6 mm
- Operating temperature: -20°C to +85°C
- Compliant EU-directive 2011/65/EG (RoHS)

precision works better

Recommended operating conditions

Electrical characteristics are only effective for the range of the operating temperatures. Typical values at 25 °C and Vcc = 5 VDC.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply voltage	U _B	4.5	5.0	5.5	V _{DC}	
	U _B	8.0	12.0	30.0	V _{DC}	
Supply current	l _{UB}	20	37	44	mA	no load
Reverse polarity protection	U _B	-36		0	V _{DC}	8-30V Version
			None			5V Version
Output current per channel	lout	-1.0		20	mA	
High level output voltage	V _{oH}	2.4		5.5	V_{DC}	TTL output
	V _{oH}	U _B -3V		30	V _{DC}	HTL output
Low level output voltage	V _{oL}			0.7	V_{DC}	TTL output
	V _{oL}			1.5	V _{DC}	HTL output
Rise time	tr	5	15	20	ns	R _T = 120Ω
Fall time	t _f	5	15	20	ns	R _T = 120Ω
Pulse width	Ρ	10:90	50:50	90:10	%	depended on resolution $\pm 0.32 e^{(0.4 * n)}$ [n = bits]
Phase shift			90		°e	depended on resolution
Absolute angular accuracy				± 0,5	DEG	
Load capacitance	C _T			100	pF	
Count frequency	f			500	kHz	$rpm * N / 60 \times 10^{-3}$
Start up time	t _T			2	ms	
ESD voltage	U _{ESD}			2	kV	discharged over 1,5k Ω
Pole-pair	р	1		4		for block commutation
Environment						
Operating temperature	T _A	-20	25	85	°C	
Storage temperature	T _S	-20		85	°C	
Humidity exposure				90	%RH	not codensing
Vibration				1000	Hz	10 g
Magnet axis displacement				0.1	mm	vs. center of sensor

precision works better

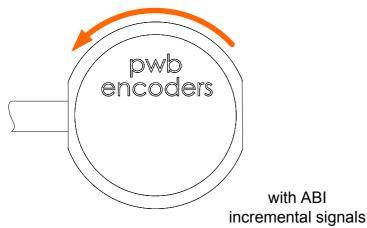
Mechanical Notes

Parameter	Value	Tolerance	Unit
Max. allowable axial shaft play of motor	0.1	-	mm
Max. allowable radial shaft play of motor	0.02	-	mm
Mounting screw size (DIN 84)	M3	-	-
Pitch circle diameter	36.0	±0.1	mm
Shilded cable, twisted pair, tinned ends	3 x 2 x 0,14 mm	-	mm
Total weight	60	-	g
Moment of inertia of the hub with the code wheel	13.0	±1.0	gcm ²
Protection grade according to DIN 40500	IP65	-	-
max. speed (mechanical)	10,000	-	rpm

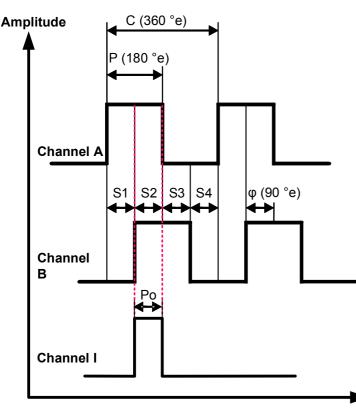
PWB encoders GmbH RESTRICTED

THIS DOCUMENT AND ANY ASSOCIATED DATA CONTAIN RESTRICTED INFORMATION THAT IS PROPERTY OF **PWB encoders GmbH** AND MAY NOT BE DISCLOSED OR DUPLICATED FOR OTHERS EXCEPT AS AUTHORIZED BY **PWB encoders GmbH**

INFORMATION CONTAINED IN THIS PUBLICATION MAY BE SUPERSEDED BY UPDATES. IT IS YOUR RESPONSIBILITY TO ENSURE THAT YOUR APPLICATION MEETS WITH YOUR SPECIFICATIONS.



precision works better


Electrical interface

Rotation direction clockwise

Signal	Cable Wire color
UB	white
GND	brown
NC	green
Ch. I	yellow
Ch. A	grey
Ch. B	pink

Rotation direction clockwise

Definitions

Counts per Revolution (CPR): The number of increments per revolution.

One Cycle (C): 360 electrical degrees (°e), one period of the signal.

Cycle Error (Δ **C**): The deviation in electrical degrees of the pulse width from its ideal value. It is an indication of cycle uniformity.

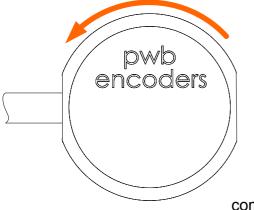
Pulse Width (P): The number of electrical degrees when an output is "HIGH" during one cycle, nominally 180 °e or half a cycle.

Pulse Width Error (ΔP): The deviation in electrical degrees of the pulse width from its ideal value of 180 °e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighbouring transition in the output of channel B. There are 4 states per cycle, each nominally 90 $^{\circ}$ e (S1 – S4).

Phase (ϕ **)**: The number of electrical degrees between the centre of the high state on channel A and the centre of the high state on channel B. This value is nominally 90 °e (the signals A and B can be used for quadrature).

Index pulse width (Po): The number of electrical degrees when the index is high during one full shaft revolution.



precision works better

Electrical interface

Rotation direction clockwise

with UVW commutation signals

Signal	Cable Wire color
UB	white
GND	brown
NC	green
V	yellow
U	grey
W	pink

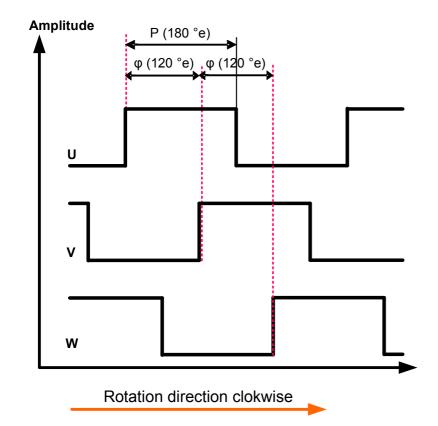
Definitions

Counts per Revolution (CPR): The number of pole per revolution.

One Cycle (C): 360 electrical degrees (°e), one period of the signal.

Cycle Error (Δ **C**): The deviation in electrical degrees of the pulse width from its ideal value. It is an indication of cycle uniformity.

Pulse Width (P): The number of electrical degrees when an output is "HIGH" during one cycle, nominally 180 °e or half a cycle.

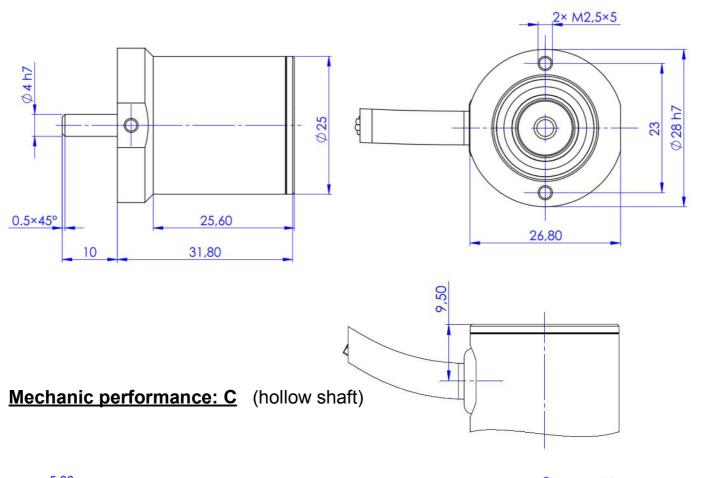

Pulse Width Error (ΔP): The deviation in electrical degrees of the pulse width from its ideal value of 180 °e.

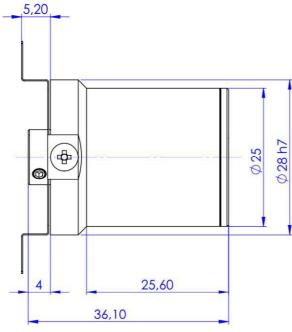
State Width (S): The number of electrical degrees between a transition in the output of channel U and the neighbouring transition in the output of channel V.

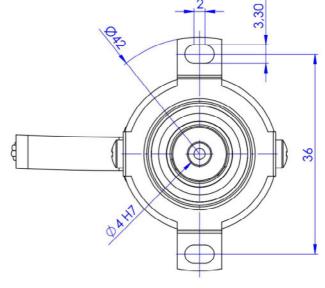
State Width Error (Δ S): The deviation in electrical degrees of each state width from its ideal value of 120 °e.

Phase (ϕ **)**: The number of electrical degrees between the centre of the high state on channel U and the centre of the high state on channel V. This value is nominally 120 °e

Phase Error ($\Delta \phi$): The deviation in electrical degrees of the phase from its ideal value of 120 °e.

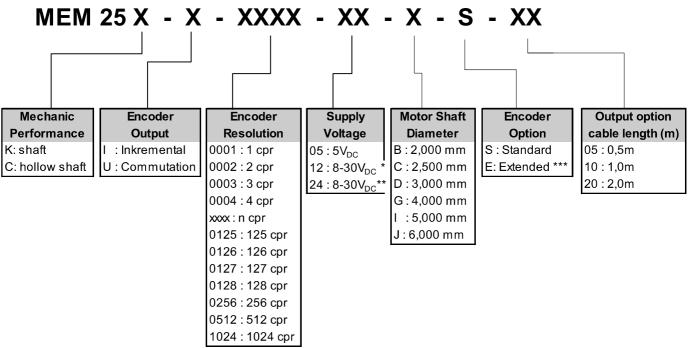






precision works better

Mechanic performance: K (shaft)



precision works better

Ordering information

Ordering code:

Note:

* TTL output

** HTL output

*** for example: further torque supports (customized)

IMPORTANT NOTICE

The guarantee will be voided by misuse, accident, modification, unsuitable physical or operating environment, operation in other than the specified operating environment, or failure caused by a product for which *PWB encoders GmbH* is not responsible.

PWB encoders GmbH reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services also datasheets at any time.